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Scaling behavior of the conserved transfer threshold process

S. Lübeck*
Department of Physics of Complex Systems, Weizmann Institute of Science, 76100 Rehovot, Israel
and Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t, 47048 Duisburg, Germany

~Received 20 June 2002; published 14 October 2002!

We analyze numerically the critical behavior of an absorbing phase transition in the conserved transfer
threshold process. We determined the steady state scaling behavior of the order parameter as a function of both
the control parameter and an external field, conjugated to the order parameter. The external field is realized as
a spontaneous creation of active particles which drives the system away from criticality. The obtained results
yield that the conserved transfers threshold process belongs to the universality class of absorbing phase
transitions in a conserved field.
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I. INTRODUCTION

The scaling behavior of directed percolation is recogniz
as the paradigm of the critical behavior of several noneq
librium systems which exhibit a continuous phase transit
from an active state to an absorbing nonactive state~see, for
instance,@1#!. The widespread occurrence of such system
physics, biology, as well as catalytic chemical reactions
reflected by the well known universality hypothesis of Ja
sen and Grassberger that models which exhibit a continu
phase transition to a single absorbing state generally be
to the universality class of directed percolation@2,3#. Intro-
ducing additional symmetries the critical behavior diffe
from directed percolation. In particular particle conservat
leads to the different universality class of absorbing ph
transitions with a conserved field as pointed out in@4#. In
that work the authors introduced two models, the conser
lattice gas~CLG! and the conserved threshold transfer p
cess~CTTP!. The latter one is a conserved modification
the threshold transfer process introduced in@5#. Both models
display a continuous phase transition from an active to
inactive phase and are believed to belong to the same
versality class@4#. The steady-state scaling behavior of t
CLG model was investigated recently. The order param
and its fluctuations were numerically examined in@6#. The
scaling behavior in an external field conjugated to the or
parameter was considered in@7#. Furthermore, a modified
CLG model was introduced which allows us to determ
analytically the steady-state mean-field scaling behavio
the universality class@8,9#.

On the other hand, the scaling behavior of the CTTP w
investigated in low dimensional (D51,2) systems only
@4,10# and no external field was applied. Therefore we co
sider in this work the CTTP with and without an extern
field in various dimensions (D51,2,3,4,5,6) and determine
set of critical exponents. All obtained results coincide w
those of the CLG model, strongly supporting the universa
hypothesis of@4#.

*Electronic address: sven@thp.uni.duisburg.de
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II. MODEL AND SCALING BEHAVIOR

In this work we consider the CTTP on simple cubic la
tices of linear sizeL in various dimensions withN particles.
The lattice sites may be empty, occupied by one particle
occupied by two particles. Empty and single occupied s
are considered as nonactive whereas double occupied la
sites are considered as active. In the latter case one trie
transfer both particles of each active site to randomly cho
empty or single occupied nearest neighbor sites. If no ac
sites exist the system is trapped forever in a certain confi
ration, a so-called absorbing state.

In the following we denote the densities of active sit
with ra and the density of particles on the lattice asr
5N/LD, which is considered as the control parameter of
absorbing phase transition. The density of active sitesra is
the order parameter of the absorbing phase transition, i.e
vanishes at the critical densityrc according to

ra;drb, ~1!

with the reduced control parameterdr5r/rc21 and the or-
der parameter exponentb.

Similar to equilibrium phase transitions it is possible
the case of absorbing phase transitions to apply an exte
field h which is conjugated to the order parameter~see, for
instance,@1#!. As usual for continuous phase transitions t
conjugated field has to destroy the disordered phase and
associated linear response function]ra/]h has to diverge at
the critical point (dr50,h50). In the case of an absorbin
phase transition the external field acts as a spontaneous
ation of active particles, i.e., the external field destroys
absorbing state and thus the phase transition itself. But c
sidering absorbing phase transitions with particle conve
tion one has to take care that the external field does
change the particle number. A possible realization of the
ternal field was developed in@7# where the external field
triggers movements of inactive particles which may be a
vated in this way. The external fieldh is another relevant
scaling field and for sufficiently small values ofh the order
parameter scales as

ra~dr,h!;l r̃ ~drl21/b,hl2s/b! , ~2!
©2002 The American Physical Society14-1
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with the critical field exponents and the scaling functionr̃ .
Choosing drl21/b51 one recovers Eq.~1! whereas
hl2s/b51 leads at the critical density to

ra;hb/s. ~3!

In our simulations we start with randomly distributed pa
ticles. All active sites are listed and this list is updated in
randomly chosen sequence. In the case that an external
is applied the active particle creation is performed after e
update step in order to mimic the external field. After a c
tain relaxation time the system reaches a steady state w
the density of active sites at update stept fluctuates around
the average valuêra(dr,h,t)& which is interpreted as the
order parameterra(dr,h) ~see, for instance, Figs. 1 of@6,7#!.

Additionally to the order parameter we consider its flu
tuations

Dra~dr,h!5LD@^ra~dr,h,t !2&2^ra~dr,h,t !&2#. ~4!

Approaching the transition point the fluctuations diverge
zerofield according to

Dra~dr,h50!;dr2g8. ~5!

The fluctuation exponentg8 fulfills the scaling relation@11#

g85n'D22b, ~6!

where the exponentn' describes how the spatial correlatio
length diverges at the transition point. In the critical regim
we assume that the fluctuations obey the scaling ansatz

Dra~dr,h!5lg8d̃~drl,hls!. ~7!

Settingdrl51 one recovers Eq.~5! for h50.
Analogous to equilibrium phase transitions the susce

bility is defined as the derivative of the order parameter w
respect to the conjugated field

x~dr,h!5
]

]h
ra~dr,h!5l12s/bc̃~drl21/b,hl2s/b!.

~8!

Settingdrl21/b51 one gets that the susceptibility diverg
for zero field as required according to

]ra

]h
uh→0;dr2g. ~9!

Furthermore, one yields the scaling relation

g5s2b , ~10!

which corresponds to the well known Widom equation
equilibrium phase transitions. Using this scaling relation o
can calculate the value of the susceptibility exponentg from
the obtained values ofb ands. Notice that in contrast to the
scaling behavior of equilibrium phase transitions the n
equilibrium absorbing phase transition is characterized
gÞg8.
04611
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III. BELOW THE UPPER CRITICAL DIMENSION

At the beginning of our analysis we consider the scal
behavior of the order parameter forD51,2,3. System sizes
up to L5131072 for D51, L52048 for D52, and L
5256 for (D53) are considered. In each cases we start
simulation with randomly distributed particles. After a ce
tain transient regime the system reaches a steady state w
the density of active particles fluctuates around an aver
value which is interpreted as the order parameter. In
steady state up to 2 108 update steps forD51 and 2 106 for
D52,3 are performed to measure the average density of
tive sites. For zero field this procedure is repeated for at le
10 different initial configurations in order to get an accura
estimation of the order parameter close to the critical po
(r5rc , h50).

In Fig. 1 we present the data of the one-dimensional or
parameter at zero field. Approaching the transition point
corresponding correlation length increases and the sys
tends to the absorbing state if the correlation length is of
order of the system size. Instead of a finite-size scal
analysis~see, for instance,@4,10,12#! we take care of these
finite-size effects in the way that we increase the system
before these finite-size effects occur and use only data f
simulations that have not reached the absorbing state.

Decreasing the particle density the order parameter
creases and vanishes at the transition point~see Fig. 1!. To
determine the critical indices one varies the critical dens
rc until one obtains asymptotically a straight line in a log-lo
plot. The exponent is then obtained by a regression analy
The values of the order parameter as a function of the
duced particle densitydr are plotted in Fig. 2. In all case
the asymptotic behavior (dr→0) of the order paramete
obeys Eq.~1!. For D51 we getrc50.9692960.00003 and
b50.38260.019. The latter value is smaller than the val
b50.412 estimated from significantly smaller system siz

FIG. 1. The order parameterra as a function of the particle
density for zero field ~symbols! and for h50.0001 and h
50.00005~lines!. The inset displays the order parameter fluctu
tions Dra for zero field~symbols! and for h50.0002,h50.0001,
andh50.00005~lines!.
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(L<5000) @10#. Furthermore, our value differs fromb
50.4260.02 obtained from simulations of the on
dimensional fix-energy Manna sandpile model@12# that is
expected to belong to the same universality class.

In the two-dimensional case we obtainrc50.69392
60.00001 andb50.63960.009. Again the order paramete
exponent differs slightly from the previously reported res
b50.656 obtained from simulations of small lattice siz
(L<160) @10#. But our value agrees with the estimate of t
corresponding two-dimensional Manna sandpile modeb
50.6460.01 @13#.

The estimates of the three-dimensional model arerc
50.6048960.00002 andb50.84060.012. All obtained
critical exponents are listed in Table I.

In Fig. 3 we present the order parameter fluctuations a
function of the control parameter at zero field. We obse
for D,Dc a power-law behavior according to Eq.~5!. Using
a regression analysis we get the estimatesg850.662
60.071 for D51, g850.38160.013 for D52, and g8
50.18760.030 forD53.

FIG. 2. The order parameterra as a function of the reduce
particle densitydr at zero field for various dimensionsD. The
dashed line corresponds to a power-law behavior according to
~1! for DÞDc . For D56 the data are shifted horizontally by
factor 1.5 in order to avoid an overlap. In the case of the fo
dimensional model the dashed line corresponds to Eq.~14! with B
50.15.
04611
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In the following we analyze the order parameter as a fu
tion of the control parameterdr for different fields fromh
51025 up to 2 1024. The applied field results in a smooth
ing of the zero-field curve, i.e., the order parameter increa
smoothly with the control parameter forh.0 ~see Fig. 1!.
According to the scaling ansatz of the order parameter@Eq.
~2!# we chooseh l2s/b51 and get the scaling form

ra~dr,h!5hb/s r̃ ~dr h21/s,1!. ~11!

Thus one varies the exponents until the curves for different
values of the driving field have to collapse onto the scal
function r̃ if one plots rah

2b/s as a function ofdrh21/s.
Convincing results are obtained fors51.77060.058(D
51), s52.22960.032(D52), as well as s52.069
60.043(D53) and the corresponding scaling plots a
shown in Fig. 4.

Next we consider the scaling behavior of the order para
eter fluctuationsDra. The fluctuation data forD51 are
shown for different values of the external field in the inset
Fig. 1. For finite fields the fluctuations display a peak. A
proaching the transition point (h→0) this peak becomes

q.

-

FIG. 3. The order parameter fluctuationsDra as a function of
the reduced particle densitydr at zero field for various dimension
D. The dashed line corresponds to a power-law divergence@Eq.
~5!#. For D>Dc the fluctuations are maximal at the transition po
but finite.
TABLE I. The critical densityrc and the critical exponentsb, s, g8, and g of the CTTP model for
various dimensionsD. The values of the susceptibility exponentg are calculated via Eq.~10!. The asterisk
denotes logarithmic corrections to the power-law behavior.

D rc b s g8 g

1 0.96929 0.38260.019 1.77060.058 0.66260.071 1.38860.063
2 0.69392 0.63960.009 2.22960.032 0.38160.013 1.59060.033
3 0.60489 0.84060.012 2.06960.043 0.18760.030 1.22960.045
4 0.56705 1* 2* 0* 1*
5 0.54864 1 2 0 1
6 0.53816 1 2 0 1
4-3
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divergence signalling the critical point. In order to analy
the scaling behavior of the fluctuations we use the sca
ansatz Eq.~7! and seth ls51:

Dra~dr,h!5h2g8/sd̃~drh21/s,1!. ~12!

Using the above determined values ofrc , s, andg8 we get
good data collapses confirming the accuracy of our anal
~see Fig. 5!.

Furthermore, we determine the susceptibility exponeng.
Using the scaling relation Eq.~10! one gets the estimates o

FIG. 4. The scaling plot of the order parameter fluctuationsDra

for various dimensions. ForD.1 the curves are shifted verticall
in order to avoid overlaps. In the case of the four-dimensio
model rah

21/2u ln hu2S is plotted vs drh21/2u ln hub2s/2 with S
50.28 andb2s/2520.12 ~see text!.

FIG. 5. The scaling plots of the order parameter fluctuatio
Dra for various dimensions. ForD.1 the curves are shifted verti
cally in order to avoid overlaps. The fluctuations diverge at
critical point for D,4 whereas a jump of the fluctuations is o
served in higher dimensions at zero field. In the case of the f
dimensional modelDra is plotted vsdrh21/2u ln hu2h with h50.1.
04611
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the susceptibility exponentsg51.38860.063(D51), g
51.59060.033(D52), andg51.22960.045(D53).

IV. AT THE UPPER CRITICAL DIMENSION

In the case of the four-dimensional model we conside
system sizes fromL58 up to L564. At least 106 update
steps were used to reach the steady state close to the tr
tion point and 23106 update steps were performed to dete
mine the order parameter and its fluctuations.

At the upper critical dimensionDc54 the scaling behav-
ior of the CTTP is affected by logarithmic corrections simil
to the CLG model@6,7#. As argued in@7# the order paramete
obeys in leading order the scaling ansatz

ra~dr,h!5lu lnlu l r̃ ~drl21/bu lnlub,hl2s/bu lnlus!,
~13!

where the exponentsb ands are given by the correspondin
mean-field valuesb51 ands52 @9#, respectively. Thus, for
zero field the asymptotic scaling behavior of the order
rameter obeys

ra~dr,h50!;dru lndruB ~14!

with B5b1 l . In our analysis we plotra/dr as a function of
u ln huB and vary the exponentB as well as the critical density
rc until one gets asymptotically a straight line. The best
sult is obtained forB50.15, rc50.5670560.00003 and the
corresponding plot is shown in Fig. 6. This value ofB differs
from the corresponding value of the CLG modelB50.24
@7#.

Similar to the lower dimensions we consider the scal
behavior of the order parameter as a function of the con

l

s

e

r-

FIG. 6. The density of active sites at the upper critical dime
sion Dc54. The data are rescaled according to Eq.~14!. The as-
sumed asymptotic scaling behavior~dashed line! is obtained forB
50.15.
4-4
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parameter for different external fields. Choosi
hl2s/bu lnlus51 the scaling ansatz@Eq. ~13!# yields in lead-
ing order

ra~dr,h!5h1/2u ln huS r̃ ~x,1!, ~15!

where the scaling argumentx is given in leading order by

x5dr h21/2u ln hub2s/2 ~16!

with S5s/21 l . Varying the logarithmic correction expo
nents one gets forS50.28 andb2s/2520.12 a convincing
data collapse, which is shown in Fig. 4. Using the valuesS
5 l 1s/250.28 andb2s/2520.12 we get the estimation
B5b1 l 50.16 which agrees withB50.15 obtained from
numerical simulations in zero field. On the other hand, t
value differs from the corresponding estimations of the C
modelB50.24, S50.45, andb2s/2520.17 @7#.

Furthermore, we consider how the logarithmic correctio
affect the scaling behavior of the fluctuations at the up
critical dimension. As pointed out in@7# the order paramete
fluctuations are expected to obey the scaling ansatz

Dra~dr,h!5d̃~drh21/2u ln hu2h,1!. ~17!

A good data collapse is observed forh50.10 ~see Fig. 5!
which differs again from the corresponding value of the CL
modelh50.39 @7#.

V. ABOVE THE UPPER CRITICAL DIMENSION

A modified version of the CTTP with random neighb
hopping was recently introduced in@9#. There, unrestricted
particle hopping breaks long-range correlations and the s
ing behavior is characterized by the mean-field valuesrc
51/2, b51, ands52 which are calculated analytically.

In our simulations of the five-dimensional model we co
sidered system sizes fromL58 up toL532 whereas system
sizes fromL54 up toL516 are used forD56. At least 2
3106 update steps were used to reach the steady state
23106 update steps were performed to determine the o
parameter and its fluctuations. The values of the order
rameter are plotted in Fig. 2 and the obtained critical den
ties arerc50.5486460.00005 forD55 and rc50.53816
60.00007 forD56, respectively. In both dimensions th
asymptotic scaling behavior of the order parameter is
agreement with the mean-field behaviorb51.

The fluctuations of the order parameterDra are plotted in
Fig. 3. Analogous to the CLG model the fluctuations a
characterized by a jump at the transition point correspond
to g850 @6#.

Above the critical dimension, i.e.,D>5, the scaling be-
havior of the CTTP is expected to obey again the sca
ansatzes, Eqs.~2! and~7!, where the exponents are given b
the mean-field values independently of the particular dim
sion. The obtained data collapse of the order param
curves are presented in Fig. 4 and confirm the ab
scenario.
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Furthermore, we consider the fluctuations above the up
critical dimension. According to the mean-field valueg8
50 @6# we plot Dra as a function ofdrh21/2 and the ob-
tained data collapses are shown in Fig. 5.

Finally we address the question how the critical densit
depends on the dimension. As can be seen from Table I
critical density tends with increasing dimension to the me
field valuerc51/2 @9# that corresponds to an infinite dimen
sion. Our analysis reveals that the critical densities
proaches that mean-field value according to

rc~D !2
1

2
;D2t ~18!

FIG. 7. The critical densityrc(D) as a function of the dimen-
sionD. The critical density of the mean-field solution is denoted
rc(`)51/2. The dashed line corresponds to a power-law beha
@Eq. ~18!# with an exponent 1.48.

FIG. 8. The critical exponentsb, g8, ands of the CTTP and
CLG models ~obtained from@6,7#! for various dimensions. The
dashed lines are just to guide the eyes.
4-5
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with t51.4860.05 ~see Fig. 7!. This behavior is different
from that of CLG models on simple cubic lattices which
characterized by an exponentt51 @8#.

VI. CONCLUSIONS

We investigated the steady-state scaling behavior of
CTTP model in various dimensions. The order parameter
ponent, the fluctuation exponent and the external field ex
nent are determined and the corresponding values are l
in Table I. ForD51 andD52 our results of the order pa
rameter exponents differ from previous simulations obtain
from significantly smaller system sizes. Our values of
critical exponentsb, g8, ands agree within the error bar
with the corresponding exponents of the CLG model~see
Fig. 8!, strongly supporting the conjecture@4# that both mod-
els belong to the same universality class.

The picture is not so clear at the upper critical dimens
Dc54. Although the exponents are identical the logarithm
e

, J
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correction exponents of the CTTP and CLG model are d
ferent. This result is rather surprising since the logarithm
corrections exponents are a characteristic feature of
whole universality class~see, for instance,@14#!. We think
that more than statistical uncertainties this result is cause
systematic uncertainties of our analysis. In all cases we
cused our attention to the leading order of the scaling beh
ior. Taking corrections to the leading order into account m
result in comparable values of the logarithmic correction
ponents. Further investigations are needed to clarify
point.
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