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Scaling behavior of the conserved transfer threshold process
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We analyze numerically the critical behavior of an absorbing phase transition in the conserved transfer
threshold process. We determined the steady state scaling behavior of the order parameter as a function of both
the control parameter and an external field, conjugated to the order parameter. The external field is realized as
a spontaneous creation of active particles which drives the system away from criticality. The obtained results
yield that the conserved transfers threshold process belongs to the universality class of absorbing phase
transitions in a conserved field.
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I. INTRODUCTION Il. MODEL AND SCALING BEHAVIOR

In this work we consider the CTTP on simple cubic lat-
The scaling behavior of directed percolation is recognizedices of linear size. in various dimensions witiN particles.
as the paradigm of the critical behavior of several nonequiThe lattice sites may be empty, occupied by one particle, or
librium systems which exhibit a continuous phase transitiorPccupied by two particles. Empty and single occupied sites
from an active state to an absorbing nonactive Sisee, for ~are considered as nonactive whereas double occupied lattice

physics, biology, as well as catalytic chemical reactions idransfer both particles of each active site to randomly chosen

reflected by the well known universality hypothesis of Jans€MPLY or single occupied nearest neighbor sites. If no active

sen and Grassberger that models which exhibit a continuou?n.ES exist the system is tr'apped forever in a certain configu-
phase transition to a single absorbing state generally belonrjlt'lznihae Sf?)]l%?/l/lier:]d a:/t/):o(;zlr?gt;t?r::. densities of active sites
to the universality class of directed percolati@3]. Intro- with and the gdensit of particles on the lattice as
ducing additional symmetries the critical behavior differs Ra y P A

from directed percolation. In particular particle conservation_, N/L®, which is considered as the control parameter of the
P - NP P absorbing phase transition. The density of active sites

leads to the different universality class of absorbing phas?he order parameter of the absorbing phase transition, i.e., it
transitions with a conserved field as pointed ouf4h In vanishes at the critical densipy, according to T
that work the authors introduced two models, the conserved

lattice gas(CLG) and the conserved threshold transfer pro-
cess(CTTP). The latter one is a conserved modification of
the threshold transfer process introduce@ih Both models . e reguced control parametép=p/p.—1 and the or-
display a continuous phase transition from an active to alyor parameter exponept
inactive phase and are believed to belong to the same uni- gjijar 1o equilibrium phase transitions it is possible in
versality clas§4]. The steady-state scaling behavior of they,qo case of absorbing phase transitions to apply an external
CLG. model was investigated repently. The _order parametefia|d h which is conjugated to the order parametsee, for
and its fluctuations were numerically examined[&. The  jnstance[1]). As usual for continuous phase transitions the
scaling behavior in an external field conjugated to the ordegonjugated field has to destroy the disordered phase and the
parameter was considered [id]. Furthermore, a modified associated linear response functiggy,/Jh has to diverge at
CLG model was introduced which allows us to determinethe critical point §p=0h=0). In the case of an absorbing
analytically the steady-state mean-field scaling behavior ophase transition the external field acts as a spontaneous cre-
the universality clasf8,9]. ation of active particles, i.e., the external field destroys the
On the other hand, the scaling behavior of the CTTP wagbsorbing state and thus the phase transition itself. But con-
investigated in low dimensionalD(=1,2) systems only sidering absorbing phase transitions with particle conversa-
[4,10] and no external field was applied. Therefore we contion one has to take care that the external field does not
sider in this work the CTTP with and without an external change the particle number. A possible realization of the ex-
field in various dimensions=1,2,3,4,5,6) and determine a ternal field was developed ifi7] where the external field
set of critical exponents. All obtained results coincide withtriggers movements of inactive particles which may be acti-

hypothesis of4]. scaling field and for sufficiently small values bfthe order

parameter scales as

pa~ OpP, 1)

*Electronic address: sven@thp.uni.duisburg.de pa( Op,h)~N\T(Sp\~—YE hx~7B) | )
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with the critical field exponent and the scaling function. 0.20 —

Choosing spx~Y$=1 one recovers Eq.(1) whereas .
hx~?'8=1 leads at the critical density to H

015 g 10 }
pan”. @ 3 AN
In our simulations we start with randomly distributed par- o ﬁ

ticles. All active sites are listed and this list is updated in a g0 | 0955 055

randomly chosen sequence. In the case that an external fiel P
is applied the active particle creation is performed after eact
update step in order to mimic the external field. After a cer-

o L= 8192

tain relaxation time the system reaches a steady state wher 0.05 | i = L= 16384

the density of active sites at update stefuctuates around ; ¢ L=32768
R 4 L=65536

the average valuép,(dp,h,t)) which is interpreted as the : «<L=131072

order parametes( op,h) (see, for instance, Figs. 1 [8,7]). 0.00 . . . .

Additionally to the order parameter we consider its fluc- 0.955 0.960 0.965 0.970 0.975 0.980
tuations o
Apa(gp,h)zLDHpa( 5p,h,t)2>—<pa(5p,h,t))2]_ (4) FIG. 1. The order parameter, as a function of the particle

density for zero field (symbolg and for h=0.0001 andh
Approaching the transition point the fluctuations diverge for=0.00005(lines). The inset displays the order parameter fluctua-
zerofield according to tions Ap, for zero field (symbol$ and forh=0.0002,h=0.0001,
andh=0.00005(lines).
Apy(op,h=0)~6p 7. 5
Ill. BELOW THE UPPER CRITICAL DIMENSION

The fluctuation exponeny’ fulfills the scaling relatiorf11]
At the beginning of our analysis we consider the scaling

v'=v, D-2p, (6) behavior of the order parameter fbr=1,2,3. System sizes
up to L=131072 forD=1, L=2048 for D=2, andL
where the exponent, describes how the spatial correlation = 256 for (D=3) are considered. In each cases we start the
length diverges at the transition point. In the critical regimesjmylation with randomly distributed particles. After a cer-
we assume that the fluctuations obey the scaling ansatz  tajn transient regime the system reaches a steady state where
— the density of active particles fluctuates around an average
Apa(dp,n)=N\"d(5p\,hN7). (7)  value which is intergreted as the order parameteér. In the
: _ B steady state up to 2 1@pdate steps fod =1 and 2 10 for
Settingdph =1 one recovers Ed5) for h_.(.)' .D=2,3 are performed to measure the average density of ac-
. _An_alogo_us to equmbrlu_m phase transitions the susceptlﬁve sites. For zero field this procedure is repeated for at least
bility is defined as the derivative of the order parameter W|th10 different initial configurations in order to get an accurate

respect to the conjugated field estimation of the order parameter close to the critical point
9 (p=pc, h=0).
X(8p,h) = — p(8p,h) =\ 7B Sph Y hn~1B). In Fig. 1 we present the data of the one-dimensional order
h parameter at zero field. Approaching the transition point the
(8) corresponding correlation length increases and the system
tends to the absorbing state if the correlation length is of the
order of the system size. Instead of a finite-size scaling
analysis(see, for instancd4,10,17) we take care of these
Ipa finite-size effects in the way that we increase the system size
%|hﬂo~ Sp~ 7. (99 before these finite-size effects occur and use only data from
simulations that have not reached the absorbing state.
Decreasing the particle density the order parameter de-
creases and vanishes at the transition p@ee Fig. 1 To
y=0-p, (100  determine the critical indices one varies the critical density
pc until one obtains asymptotically a straight line in a log-log
which corresponds to the well known Widom equation ofplot. The exponent is then obtained by a regression analysis.
equilibrium phase transitions. Using this scaling relation oneThe values of the order parameter as a function of the re-
can calculate the value of the susceptibility expongfitom  duced particle densityp are plotted in Fig. 2. In all cases
the obtained values g8 ando. Notice that in contrast to the the asymptotic behaviordp—0) of the order parameter
scaling behavior of equilibrium phase transitions the non-obeys Eq.(1). ForD=1 we getp.=0.9692%- 0.00003 and
equilibrium absorbing phase transition is characterized by3=0.382+0.019. The latter value is smaller than the value
yEy'. B=0.412 estimated from significantly smaller system sizes

Settingsp\ ~YA=1 one gets that the susceptibility diverges
for zero field as required according to

Furthermore, one yields the scaling relation
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FIG. 2. The order parametgr, as a function of the reduced FIG. 3. The order parameter fluctuatioAp, as a function of
particle densitysp at zero field for various dimensior®. The  the reduced particle densiip at zero field for various dimensions
dashed line corresponds to a power-law behavior according to E@. The dashed line corresponds to a power-law divergé¢fce
(1) for D#D,. For D=6 the data are shifted horizontally by a (5)]. ForD=D, the fluctuations are maximal at the transition point
factor 1.5 in order to avoid an overlap. In the case of the four-but finite.
dimensional model the dashed line corresponds to(E4).with B
=0.15. In the following we analyze the order parameter as a func-
tion of the control parametefp for different fields fromh
(L<5000) [10]. Furthermore, our value differs fron8 =10° up to 2 10*. The applied field results in a smooth-
=0.42+-0.02 obtained from simulations of the one- ing of the zero-field curve, i.e., the order parameter increases
dimensional fix-energy Manna sandpile modl&P] that is  smoothly with the control parameter fbr>0 (see Fig. 1
expected to belong to the same universality class. According to the scaling ansatz of the order paramidEey:

In the two-dimensional case we obtajn.=0.69392 (2)] we chooseh A~ ?P=1 and get the scaling form
+0.00001 ang3=0.639+0.009. Again the order parameter
exponent differs slightly from the previously reported result
B=0.656 obtained from simulations of small lattice sizes
(L=<160) [10]. But our value agrees with the estimate of the Thus one varies the exponemntuntil the curves for different
corresponding two-dimensional Manna sandpile model Vvalues of the driving field have to collapse onto the scaling
=0.64+0.01[13]. functiont if one plots p,h#? as a function ofsph~ 7.

The estimates of the three-dimensional model are Convincing results are obtained far=1.770+0.058(D
=0.60489-0.00002 and 3=0.840+0.012. All obtained =1), ¢=2.229+-0.0320=2), as well as ¢=2.069
critical exponents are listed in Table I. +0.0430=3) and the corresponding scaling plots are

In Fig. 3 we present the order parameter fluctuations as shown in Fig. 4.
function of the control parameter at zero field. We observe Next we consider the scaling behavior of the order param-
for D<D. a power-law behavior according to E&). Using  eter fluctuationsAp,. The fluctuation data foD=1 are
a regression analysis we get the estimatgs=0.662 shown for different values of the external field in the inset of
+0.071 forD=1, y'=0.381+0.013 for D=2, and y’ Fig. 1. For finite fields the fluctuations display a peak. Ap-
=0.187+0.030 forD=3. proaching the transition pointh(-0) this peak becomes a

pa(p,N)=hPT(sph~27 1), (1)

TABLE I. The critical densityp. and the critical exponentg8, o, y', and y of the CTTP model for
various dimension®. The values of the susceptibility exponentare calculated via Eq10). The asterisk
denotes logarithmic corrections to the power-law behavior.

O

Pc B o Y Y
1 0.96929 0.3820.019 1.776:0.058 0.662-0.071 1.388:0.063
2 0.69392 0.6320.009 2.2290.032 0.3810.013 1.596:-0.033
3 0.60489 0.84£:0.012 2.06%-0.043 0.187%0.030 1.2290.045
4 0.56705 ¥ 2* o* 1*
5 0.54864 1 2 0 1
6 0.53816 1 2 0 1
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FIG. 4. The scaling plot of the order parameter fluctuatidpg FIG. 6. The density of active sites at the upper critical dimen-
for various dimensions. FdD>1 the curves are shifted vertically sion D.=4. The data are rescaled according to Egl). The as-

in order to avoid overlaps. In the case of the four-dimensionalsumed asymptotic scaling behavialashed lingis obtained forB
model ph~Y3Inh|™> is plotted vs Sph~Y3InhPP~92 with =  =0.15.
=0.28 andb—s/2=—0.12(see texk

_ _ _ » . the susceptibility exponentsy=1.388-0.0630=1), vy
divergence signalling the critical point. In order to analyze_ 1 5gq+ 0.0330 =2), andy=1.229+0.045D = 3).

the scaling behavior of the fluctuations we use the scaling
ansatz Eq(7) and seth\7=1:

IV. AT THE UPPER CRITICAL DIMENSION

=710 —1lo
Apgdp,h)=h"7"d(éph 1. (12 In the case of the four-dimensional model we considered

) ) ’ system sizes fronb.=8 up toL=64. At least 16 update
Using the above determined valuesgef o, andy’ we get  steps were used to reach the steady state close to the transi-

good data collapses confirming the accuracy of our analysigon point and 2< 10° update steps were performed to deter-

(see Fig. 3. _ o mine the order parameter and its fluctuations.
Furthermore, we determine the susceptibility exponent At the upper critical dimensio®.=4 the scaling behav-

Using the scaling relation E§10) one gets the estimates of jor of the CTTP is affected by logarithmic corrections similar

to the CLG mode[6,7]. As argued irff 7] the order parameter
obeys in leading order the scaling ansatz

10" D=6
D=5
pa(8p,n)=N|INN|T(SpA "YE[InN [P, AN~ B[N\ [9),
D=4 (13
10" F D=3 |
where the exponenf8 ando are given by the corresponding
D= mean-field valueg=1 ando =2 [9], respectively. Thus, for
zero field the asymptotic scaling behavior of the order pa-
o rameter obeys

Ap, (o) K™

pa( 8p,h=0)~ p[Insp[® (14)

with B=b+1. In our analysis we plgb,/dp as a function of
[Inh|® and vary the exponer® as well as the critical density
pc until one gets asymptotically a straight line. The best re-
FIG. 5. The scaling plots of the order parameter fluctuationsSult is obtained foB=0.15, p.=0.56705-0.00003 and the
Ap, for various dimensions. Fdd>1 the curves are shifted verti- Ccorresponding plot is shown in Fig. 6. This valueBoliffers
cally in order to avoid overlaps. The fluctuations diverge at theffom the corresponding value of the CLG modgt0.24
critical point for D<4 whereas a jump of the fluctuations is ob- [7].
served in higher dimensions at zero field. In the case of the four- Similar to the lower dimensions we consider the scaling
dimensional model p, is plotted vssph~Y3In h|~7 with »=0.1. behavior of the order parameter as a function of the control

-20 -10 » 10 20

0
op h
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10° . r r

parameter for different external fields. Choosing
hx ~“#|In\[’=1 the scaling ansafEq. (13)] yields in lead-
ing order

pa(Sp,h)=hY3Inh|*r(x,1), (15)
where the scaling argumentis given in leading order by

x=6p h™YInh|P~s?2 (16)

Po(D)-p ()

with 3 =s/2+1. Varying the logarithmic correction expo-
nents one gets fat =0.28 andb—s/2=—0.12 a convincing
data collapse, which is shown in Fig. 4. Using the valbes
=1+s/2=0.28 andb—s/2=—-0.12 we get the estimation
B=b+1=0.16 which agrees witlB=0.15 obtained from R
numerical simulations in zero field. On the other hand, this 1° 1 > rE—
value differs from the corresponding estimations of the CLG D
modelB=0.24, > =0.45, andb—s/2=—0.17[7]. . _ ) _
Furthermore, we consider how the logarithmic corrections . /G- 7. The critical density (D) as a function of the dimen-
affect the scaling behavior of the fluctuations at the uppe?'on D. The critical denS|t¥ of the mean-field solution is denoted py
critical dimension. As pointed out if¥] the order parameter pC(m)zllz'.The dashed line corresponds to a power-law behavior
fluctuations are expected to obey the scaling ansatz [Eq. (18] with an exponent 1.48.

5§ 6

Furthermore, we consider the fluctuations above the upper
critical dimension. According to the mean-field valyé
=0 [6] we plot Ap, as a function ofsSph~? and the ob-
tained data collapses are shown in Fig. 5.

Finally we address the question how the critical densities
depends on the dimension. As can be seen from Table | the
critical density tends with increasing dimension to the mean-
field valuep.=1/2[9] that corresponds to an infinite dimen-
sion. Our analysis reveals that the critical densities ap-
proaches that mean-field value according to

Apo(3p,h)=d(ph~"4Inh|~7,1). (17)

A good data collapse is observed fgr=0.10 (see Fig. %
which differs again from the corresponding value of the CLG
model =0.39[7].

V. ABOVE THE UPPER CRITICAL DIMENSION

A modified version of the CTTP with random neighbor
hopping was recently introduced [8]. There, unrestricted
particle hopping breaks long-range correlations and the scal-
ing behavior is characterized by the mean-field valggs
=1/2, B=1, ando=2 which are calculated analytically.

In our simulations of the five-dimensional model we con-
sidered system sizes froln=8 up toL =32 whereas system
sizes fromL=4 up toL=16 are used foD=6. At least 2
x 10° update steps were used to reach the steady state ar

1
pdD)=5~D (18

2X 10° update steps were performed to determine the ordel
parameter and its fluctuations. The values of the order pa
rameter are plotted in Fig. 2 and the obtained critical densi-
ties arep.=0.54864+0.00005 forD=5 and p.=0.53816
+0.00007 forD=6, respectively. In both dimensions the 2
asymptotic scaling behavior of the order parameter is in®
agreement with the mean-field behav@+ 1.

The fluctuations of the order parametep, are plotted in
Fig. 3. Analogous to the CLG model the fluctuations are
characterized by a jump at the transition point corresponding
to y'=0 [6].

Above the critical dimension, i.eD=5, the scaling be-
havior of the CTTP is expected to obey again the scaling
ansatzes, Eq$2) and(7), where the exponents are given by
the mean-field values independently of the particular dimen-

a

2.0

1.0

0.5

0.0

L)

s0-———00————0o
-

* CLG
o CTTP

'}
)

5

sion. The obtained data collapse of the order parameter FIG. 8. The critical exponentg, y', ando of the CTTP and
curves are presented in Fig. 4 and confirm the abov&LG models(obtained from[6,7]) for various dimensions. The
scenario. dashed lines are just to guide the eyes.
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with 7=1.48+0.05 (see Fig. J. This behavior is different correction exponents of the CTTP and CLG model are dif-
from that of CLG models on simple cubic lattices which is ferent. This result is rather surprising since the logarithmic

characterized by an exponent 1 [8]. corrections exponents are a characteristic feature of the
whole universality classgsee, for instancd,14]). We think
VI. CONCLUSIONS that more than statistical uncertainties this result is caused by

) . ) ) systematic uncertainties of our analysis. In all cases we fo-
We investigated the steady-state scaling behavior of thgysed our attention to the leading order of the scaling behav-

CTTP model in various dimensions. The order parameter Xy, Taking corrections to the leading order into account may
ponent, the fluctuation exponent and the external field exporesult in comparable values of the logarithmic correction ex-

nent are determined and the corresponding values are list§fhnents. Further investigations are needed to clarify this
in Table I. ForD=1 andD =2 our results of the order pa- pojnt.

rameter exponents differ from previous simulations obtained
from significantly smaller system sizes. Our values of the
critical exponents3, y’, and o agree within the error bars
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